Subgraph Detection with cues using Belief Propagation
نویسندگان
چکیده
We consider an Erdős-Rényi graph with n nodes and edge probability q that is embedded with a random subgraph of size K with edge probabilities p such that p > q. We address the problem of detecting the subgraph nodes when only the graph edges are observed, along with some extra knowledge of a small fraction of subgraph nodes, called cued vertices or cues. We employ a local and distributed algorithm called belief propagation (BP). Recent works on subgraph detection without cues have shown that global maximum likelihood (ML) detection strictly outperforms BP in terms of asymptotic error rate, namely, there is a threshold condition that the subgraph parameters should satisfy below which BP fails in achieving asymptotically zero error, but ML succeeds. In contrast, we show that when the fraction of cues is strictly bounded away from zero, i.e., when there exists non-trivial side-information, BP achieves zero asymptotic error even below this threshold, thus approaching the performance of ML detection. Key-words: Belief Propagation, Subgraph Detection, Semisupervised Learning, Random Graphs ∗ Corresponding author, [email protected] La Detection de Sousgraphes en presence des indices grâce au Belief Propagation Résumé : Nous considérons un graphe Erdős-Rényi qui a n sommets dont q est la probabilité d’arrêtes. La dessus il y un sousgraphe placé sur leurs m sommets selectionnés aléatoirement et leur probabilité d’arrêtes est p, en sorte que p > q. Nous proposons un algorithme distribué aux calculs locales à chaque sommet, tiré du “Belief Propagation” (BP), qui détecte les sommets du sousgraphe, quand on connait une fraction de sommets du sousgraphe en tant qu’indices. Des recherches récentes ont prouvé que la prestation du BP dans l’absence des indices est strictement inférior par rapport à la detection globale du maximum de vraisemblance (DMV). A l’opposé, ici on prouve qu’en presence des indices, la prestation du BP est à l’hauteur de celle de DMV, dans la sens où le premier reussie à detecter la sousgraphe avec une erreur qui tend a zéro, à chaque fois le dernier peut le faire, dans la limite où le nombre de sommets du graph tend l’infinité. Mots-clés : Belief Propagation, Detection de Sousgraphes, Semisupervised Learning, Graphes Aléatoires Subgraph Detection with cues using Belief Propagation 3
منابع مشابه
Probabilistic Receiver Architecture Combining BP, MF, and EP for Multi-Signal Detection
Receiver algorithms which combine belief propagation (BP) with the mean field (MF) approximation are well-suited for inference of both continuous and discrete random variables. In wireless scenarios involving detection of multiple signals, the standard construction of the combined BP-MF framework includes the equalization or multi-user detection functions within the MF subgraph. In this paper, ...
متن کاملFast Memory-Efficient Generalized Belief Propagation
Generalized Belief Propagation (gbp) has proven to be a promising technique for performing inference on Markov random fields (mrfs). However, its heavy computational cost and large memory requirements have restricted its application to problems with small state spaces. We present methods for reducing both run time and storage needed by gbp for a large class of pairwise potentials of the mrf. Fu...
متن کاملFinite Energy Survey Propagation for Constraint Satisfaction Problems
The Survey Propagation (SP) algorithm [1] has recently been shown to work well in the hard region for random K-SAT problems. SP has its origins in sophisticated arguments in statistical physics, and can be derived from an approach known as the cavity method, when applied at what is called the one-step replica symmetry breaking level. In its most general form, SP can be applied to general constr...
متن کاملRecognition of Hand-drawn Sketches with Marcov Random Fields
Freehand sketches are complex for recognition. Individual fragments of the drawing are often ambiguous to be interpreted without contextual cues. Markov Random Field (MRF) that ends up with a global model by simply specifying local interactions can naturally suffice the requirement. In our project, a recognizer based on MRF has been constructed to jointly analyze local features in order to inco...
متن کاملExtending Expectation Propagation for Graphical Models
Graphical models have been widely used in many applications, ranging from human behavior recognition to wireless signal detection. However, efficient inference and learning techniques for graphical models are needed to handle complex models, such as hybrid Bayesian networks. This thesis proposes extensions of expectation propagation, a powerful generalization of loopy belief propagation, to dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.04847 شماره
صفحات -
تاریخ انتشار 2016